$$ v(z,t)- v(z+ \Delta z) =L \Delta z \frac {\delta i}{\delta t} + R \Delta z i $$
$$ i(z,t)- i(z+ \Delta z) =C \Delta z \frac {\delta v}{\delta t} + g \Delta z v $$
$$ \frac{v(z,t)- v(z+ \Delta z)}{\Delta z} =L \frac {\delta i}{\delta t} + R i $$
$$ \frac{i(z,t)- i(z+ \Delta z)}{\Delta z} =C \frac {\delta v}{\delta t} + g v $$
$$ \frac{\delta v}{\delta z} =L \frac {\delta i}{\delta t} + R i $$
$$ \frac{\delta i}{\delta z} =C \frac {\delta v}{\delta t} + g v $$
$$ \frac{\delta v}{\delta z} = (j \omega L + R ) i $$
$$ \frac{\delta i}{\delta z} = (j \omega C + g ) v $$
$$ \frac{\delta v}{\delta i} = \frac{(j \omega L + R ) i}{(j \omega C + g ) v }$$
$$ \frac{v \delta v}{i\delta i} = \frac{j \omega L + R }{j \omega C + g }$$
$$ Z_o^2 = \frac{j \omega L + R }{j \omega C + g }$$
$$ Z_o=\sqrt{\frac{j \omega L+R}{j \omega C+g}}$$
$$ Z_o \approx \sqrt{\frac{L}{C}}$$
Voor een typische coax-kabel met binnendiameter 1.2 mm en buiten diameter 2.8 mm bekomen we de volgende parameters:
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>
<IPython.core.display.Image object>